

 Navigation

 	
 index

 	django-multiform 0.1a1 documentation

Welcome to django-multiform’s documentation!

Django-multiform is a library that allows you to wrap several forms
into one object with a form-like API.

It’s compatible with django 1.4 and 1.5.

A lot of care has been put into replicating the same API as Form so that a
MultiForm can be used anywhere a regular Form would.

The library consists of two classes: MultiForm and MultiModelForm.

MultiForm

Wraps up several Form into one object, which allows you for example
to reuse several existing forms in a generic FormView.

forms.py
from django import forms

from multiform import MultiForm

class FooForm(forms.Form):
 foo = forms.CharField()

class BarForm(forms.Form):
 bar = forms.CharField()

class FooBarForm(MultiForm):
 base_forms = [
 ('foo', FooForm),
 ('bar', BarForm),
]

views.py
from django.views import generic
from .forms import FooBarForm

class FooBarView(generic.FormView):
 form_class = FooBarForm

 def form_valid(self, form):
 form.cleaned_data['foo'] # {'foo': ...}
 form.cleaned_data['bar'] # {'bar': ...}
 return super(FooBarView, self).form_valid(form)

MultiModelForm

As the name hints, it wraps several ModelForm instances into one object.

It’s quite similar to MultiForm, but it adds a save method and it can
handle the dispatching of the instance attribute that you usually
pass to a ModelForm.

It’s useful for creating related model instances in one step with a generic
CreateView for example.

models.py
from django.db import models

class Person(models.Model):
 eye_color = models.CharField(max_length=50)
 user = models.OneToOneField(auth.get_user_model())

forms.py
from django.contrib.auth.forms import UserCreationForm
from .models import Person

from multiform import MultiModelForm

class PersonUserForm(MultiModelForm):
 base_forms = [
 ('person', PersonForm),
 ('user', UserCreationForm),
]

 def dispatch_init_instance(self, name, instance):
 if name == 'person':
 return instance
 return super(PersonUserForm, self).dispatch_init_instance(name, instance)

 def save(self, commit=True):
 """Save both forms and attach the user to the person."""
 instances = super(PersonUserForm, self).save(commit=False)
 instances['person'].user = instances['user']
 if commit:
 for instance in instances.values():
 instance.save()
 return instances

Dispatching Parameters

In the event that you want to pass different parameters to some of the wrapped
forms, you have two options (that can be used independently):

	Implement a dispatch_init_$arg method on your subclass.
This method will be called when builting the keyword arguments passed to
a wrapped form’s constructor.
This method is passed two arguments: the name of the wrapped form being built,
and the original value of the $arg keyword argument.

	Pass a $name__$arg=foo keyword argument to the MultiForm’s constructor.
This will make it so that the wrapped form with the name of $name will be
passed the $arg=foo keyword argument.
Note that in case of conflicts, this method has priority over the first one.

Any keyword argument passed to a Multiform’s contructor that’s not part of
the Form’s signature and that’s not of the form $name__* will be passed to
all wrapped forms.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Baptiste Mispelon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-multiform 0.1a1 documentation

Index

 Copyright 2013, Baptiste Mispelon.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		django-multiform 0.1a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Baptiste Mispelon.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

